Overview: Distribution Estimation, MEMS Optimization, and Disease Modeling

Brian M. Adams
Optimization and Uncertainty Estimation
(Org. 1411)

Center 1400 LTE Review (Sep. 2005 – Jan. 2006) January 17, 2006

SAND2006-0760P

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- Introduction and research interests
 - Academic background
 - Nonparametric distribution estimation
- Initial SNL projects and impact
 - Large-scale disease model for bioagent detection
 - Reliability-based shape optimization for MEMS
 - DAKOTA/UQ analysis for QASPR project
 - DAKOTA interfaces / capabilities
- Anticipated professional activity

Brian M. Adams

- LTE in 1411 since 09/19/2005
- Ph.D. in Computational and Applied Mathematics (w/ H.T. Banks), North Carolina State University
- Dissertation on nonparametric parameter identification (inverse) problems in HIV infection
- Collaborated on optimal control of HIV via treatment interruptions

Research Interests

Integration of science, mathematics, computation:

- Parameter estimation, theory and methods for estimation of uncertain parameter distributions
- Modeling infectious disease, complex biological systems, including agent-based modeling
- Optimization technology and software
- Reduced-order models, especially in nontraditional (complex systems) settings
- Scientific computing and software development

Nonparametric Distribution Estimation

Biologically-based dynamics model (for *each* patient *j*)

$$\dot{x}(t) = g(t, x; \vec{q}^{j})$$

$$y^{j}(t) = x(t; \vec{q}^{j}) + \varepsilon^{j}(t, x)$$

- Assume each patient has parameter vector q^j, so q^j
 distributed across population
- Would a particular distribution of parameters q explain long-term inter-patient variability?
- Given only outputs $y^{j}(t)$ and the DE model, identify the probability density function f(q) for parameters q that gave rise to them (an *inverse problem* to determine f(q))

Estimating Distributions from Data

Simple cost criterion can distinguish between distributions...

$$\min_{f} J(f) = \sum_{i,j} |E[x(t^{i};q)|f(q)] - y^{ij}|^{2}$$

$$= \sum_{i,j} |\int x(t^{i};q)f(q)dq - y^{ij}|^{2}$$

Computationally: pick basis and optimize over coefficients

- How to best parameterize densities? How to measure fit?
- General theory for inversion in this context
- How sensitive are model outputs to distribution? Derivatives with respect to probability measures (active research area)

Potential Application to MEMS

- Micro-Electro Mechanical Systems manufacturing
 - Highly variable output: devices vary substantially across wafer, fabrication runs
 - Yield problems: serviceable device yield often extremely low
- Given distribution of finished products and process model, invert to understand (via distributions) inputs to or events during process

...edge bias varies across wafer?

Large-scale Disease Model

GOAL: Identify location and time of insertion of bioterror agent in a community

- 1st year of LDRD with Jaideep Ray (8964) and Karen Devine (1412)
- Large-scale agent-based model to simulate spread of disease: millions of people, thousands of locations they might visit.
- Based on presentation at clinics with symptoms assume sensors did not detect
- Use Bayesian techniques for the inverse (source identification) problem, given clinical presenters

Contributions to Disease Model

- Develop efficient disease propagation model for smallpox, anthrax, etc.
 - Leverage my background in biological systems modeling and coursework in epidemic modeling to build biologically-based model
 - Determine efficient scheme for computing given bipartite person/location graph with millions of nodes – possibly implement in Trilinos framework.
 Parallel scaling important.
 - Develop network or matrix sampling methods to create Reduced Order Model – only need sufficient resolution for inverse problem.
 Reduced case should be laptop-friendly.

Contributions to Disease Model

- Develop efficient disease propagation model for smallpox, anthrax, etc.
 - Leverage my background in biological systems modeling and coursework in epidemic modeling to build biologically-based model
 - Determine efficient scheme for computing given bipartite person/location graph with millions of nodes possibly implement in Trilinos from Computationally multi-scale
 - Develop network or matrix sampling methodeleate Reduced Order Model only need sufficient resolution for inverse problem.
 Reduced case should be laptop-friendly.

RBDO for MEMS

- MESA-centered projects for Reliability-Based Design Optimization of Micro-electro mechanical systems (MEMS) using quantified uncertainty
- Bistable MEMS mechanism: target for ASC Level II milestone for errorcorrected reliability analysis of MEMS
 - Working with on error corrected reliability for
 MEMS (with Mike Eldred, Kevin Copps, Pat Notz, Jon Wittwer)
 - Idea: use directional error estimates on quantities of interest from finite element codes (SIERRA: Andante, Aria) to improve and bound reliability predictions in DAKOTA

RBDO: Bistable MEMS Mechanism

- Bistable device: switch, relay, nonvolatile memory
- Typical manufacturing uncertainties:
 - Width and length of in-plane features (due to photo mask)
 - Thickness of silicon layers
 - Young's modulus, residual stress
- Interfaced DAKOTA/UQ with SIERRA Adagio code for solid mechanics analysis
- Performed geometric shape optimization

Image credits: J.W. Wittwer

RBDO: Bistable MEMS Mechanism

- Objective: Given uncertainty, reliably maintain bistability (F_{min} < 0) while minimizing actuation force (drive F_{min} to 0)
- Define failure to be F_{min} > 0 and perform reliability-constrained optimization

$$\max_{d} F_{\min}(d)$$

$$s.t. \ 2 \le \beta(d)$$

$$50 \le F_{\max}(d) \le 150$$

$$E2(d) \le 8$$

Opportunity for DAKOTA designs to impact fabrication in Feb. 2006

RBDO: MESA RF Ohmic Switch

- Applying DAKOTA to optimize waveform for current best design (with Jordan Massad and Rich Field, 1524)
- Complete redesign
 (concept and geometry –
 Steve Thomas, 1411)
 to eliminate vibrations,
 improve reliability
- Performing shape optimization for existing and new design
- Satellite and synthetic aperture radar (SAR) applications.

current design (*Dyck* (1742), et. al., SAND2003-2210A)

QASPR: Uncertainty Quantification

- Rapidly interfaced DAKOTA to research Fortran code for analyzing defects in silicon
- Demonstrated UQ software advantage over manual single-parameter sensitivity analyses
- Showed correlation of uncertain input variables to current at several output times in simulation
- Impact: important proof of concept for further QASPR UQ studies employing Charon, Xyce
- Collaborators: Tony Giunta (1533),
 Bill Wampler (1111), Sam Myers (1112)

DAKOTA Interfaces/Capabilities

 User-requested DAKOTA-Matlab close-coupled, efficient interface

 Enables convenient use of Matlab-based simulations with DAKOTA

 Impact: optimized diffraction gratings (Louis Romero, 1414);

 Impact: waveform optimization for MEMS RF switch (Rich Field & Jordan Massad, 1524)

- Generated DAKOTA-Mathematica black box interface example, close-coupled in progress (with Shane Brown, 1411)
- Implementing automatic variable and constraint scaling (LM SV requirement)

DAKOTA Interfaces/Capabilities

• User-requested DAKOTA-Matlab close-coupled,

efficient interface

 Enables convenient use of Matlab-based simulations with DAKOTA

 Impact: optimized diffraction gratings (Louis Romero, 1414);

 Impact: waveform optimization for MEMS RF switch (Rich Field & Jordan Massad, 1524)

- Generated DAKOTA-Mathematica black box interface example, close-coupled in progress (with Shane Brown, 1411)
- Implementing automatic variable and constraint scaling (LM SV requirement)

Professional Activities

Publications

- Model fitting and prediction with HIV treatment interruption data (submitted Sept. 2005)
- Two conference proceedings papers on RBDO for MEMS in progress with Mike Eldred (REC, AIAA)

Conferences / courses

- Invited lecture at Mathematical Biosciences Institute, Spring 2006
- Epidemiology and Public Health mini-symposium invited speaker, SIAM Annual Meeting, July 2006
- Attend Copper Mountain Conference on Iterative Methods, other optimization, design conferences
- SNL Lunchtime MEMS design short course series, Spring 2006

Service

Co-mentor summer C.S. student from UIUC (with Karen Devine)

